Under inetpub the permissions and inheritance is always tricky. In the CRUD code, it will sometimes create a folder under my default website Cushing\uploads folder called 2025 (current year if it doesn't exist already), and under that create folders for the crud topics, see attached 1, and then files under the crud topics folders, see attached 2. So this works well on my laptop, but didn't work so well under my client's machine. Both as windows, me windows 10, client windows 11. I can click on the files I save when inside my crud app, they are saved as url's and use IIS web services to serve the file up in the browser. If I am using the terms correctly. On my client's computer they get permission denied. We looked everything over, but could not figure out the issue.
ChatGPT said:
You’re 100% describing the classic IIS permissions mismatch that happens specifically when PHP code creates folders and files under inetpub\wwwroot (or any IIS site root).
It works on your machine because your local account and IIS users all align nicely.
It fails on the client’s machine because IIS cannot read the folders/files your PHP code created.
Below is the exact reason and the exact fix.

✅ Why it breaks only on the client machine
On Windows 10, your user account often ends up creating folders with permissions that naturally propagate to IIS users.
On Windows 11, folder creation via PHP does not automatically inherit permissions that IIS requires.
So PHP creates, say:
C:\inetpub\Cushing\uploads\2025\
C:\inetpub\Cushing\uploads\2025\TaxMaps\
C:\inetpub\Cushing\uploads\2025\TaxMaps\Tax-Commitment-name-2025.pdf
but the IIS web user cannot read the result.

🎯 Root Cause
IIS serves files using one of these identities:
✔ IIS_IUSRS (group)
✔ IUSR (anonymous user)
✔ The Application Pool identity (e.g., IIS APPPOOL\Cushing)
If the folders created by PHP do not give Read permission to at least one of these, then:
➡️ PDFs cannot be served
➡️ You get Access Denied
➡️ The CRUD app still works (PHP itself can write the files), but the browser cannot download/read them
That’s exactly what you described.

✅ THE FIX (Guaranteed)
You only need to configure permissions once at the root of your uploads folder.
Grant these permissions on:
C:\inetpub\Cushing\uploads
Give the following users/groups:
1. IIS_IUSRS
Read & execute
List folder contents
Read
Write (important — for PHP to create folders/files)
2. IUSR
Read
3. Application Pool Identity
(e.g., IIS APPPOOL\DefaultAppPool or IIS APPPOOL\CushingAppPool)
Read
Write
👉 Make sure to turn on:
✔ “Allow inheritable permissions to propagate to child objects”
This ensures every folder PHP creates inherits correct permissions.

🚫 What went wrong on the client machine
On the client’s Windows 11 machine:
· They probably added permissions on the existing folders…
· …but your CRUD app created new folders like uploads\2025, uploads\2025\TaxMaps
· Those NEW folders inherited your logged-in user’s permissions, not IIS’s
· IIS therefore could NOT read the PDFs
That’s why:
✔ PHP successfully saved the PDF
✖ IIS returned permission denied
✔ You could see the files in Explorer
✖ Clicking the link in the browser failed
Classic IIS trap.

⭐ Exact Permission Setup You Should Apply
On folder:
C:\inetpub\Cushing\uploads
Apply these:
	Principal
	Permissions
	Applies To

	IIS_IUSRS
	Modify, Read, Write
	This folder, subfolders, files

	IUSR
	Read & execute
	This folder, subfolders, files

	IIS APPPOOL<YourAppPoolName>
	Modify
	This folder, subfolders, files

Then:
✔ Check “Replace all child object permission entries…”
to fix any old broken ones.

🔧 Optional (but recommended): Set explicit inheritance in PHP when creating folders
If PHP creates folders, you can force proper inheritance:
mkdir($path, 0777, true);
…but on Windows it doesn't strictly control ACLs.
Windows ACLs override, so fixing inheritance at the root is the real solution.

🧪 Test after fixing
Open:
https://yourserver/uploads/2025/TaxMaps/Tax-Commitment-name-2025.pdf
If it downloads → You're done.

If you want, I can also:
✔ Provide a small PHP diagnostic script to show which user identity your IIS worker process uses
✔ Provide an automated PowerShell script to fix ACLs on the entire uploads folder
✔ Review your client’s IIS setup to ensure security is correct but not too restrictive
Just say the word.
You said:
Could you do this in Python:Provide a small PHP diagnostic script to show which user identity your IIS worker process uses
ChatGPT said:
Absolutely — here is a Python script (not PHP) that you can drop into your IIS site (served through FastCGI) to show exactly which Windows user account IIS is running your FastCGI/PHP/Python code under.
This solves the big mystery:
“Which Windows user identity IIS is using when executing my server code?”
Once you know the identity, you can set proper NTFS permissions.

✅ Python IIS Diagnostic Script (FastCGI)
Save this as:
whoami.py
inside your website folder (C:\inetpub\Cushing\ or anywhere IIS serves Python).
import os
import getpass
import sys

Standard CGI header so IIS returns text
sys.stdout.write("Content-Type: text/plain\r\n\r\n")

Report process user
sys.stdout.write("PYTHON / IIS DIAGNOSTIC\n")
sys.stdout.write("========================\n\n")

sys.stdout.write(f"getpass.getuser(): {getpass.getuser()}\n")
sys.stdout.write(f"os.getlogin(): ")

try:
 sys.stdout.write(os.getlogin() + "\n")
except Exception as e:
 sys.stdout.write(f"(unavailable: {e})\n")

Environment variables (IIS adds several)
sys.stdout.write("\nENVIRONMENT VARIABLES\n")
sys.stdout.write("---------------------\n")

keys = [
 "USERNAME",
 "USERDOMAIN",
 "APP_POOL_ID",
 "WINDIR",
 "COMSPEC",
 "PROCESSOR_IDENTIFIER",
]

for key in keys:
 sys.stdout.write(f"{key}: {os.environ.get(key, '(not set)')}\n")

Show full environment section for debugging
sys.stdout.write("\nFULL ENVIRONMENT DUMP\n")
sys.stdout.write("----------------------\n")
for k, v in sorted(os.environ.items()):
 sys.stdout.write(f"{k} = {v}\n")

🔍 What this script reveals
When you access:
https://yourserver/whoami.py
You will see something like:
getpass.getuser(): IIS APPPOOL\Cushing
os.getlogin(): (unavailable: ...)
USERNAME: Cushing$
APP_POOL_ID: Cushing
or on many IIS installs:
getpass.getuser(): IIS APPPOOL\DefaultAppPool
USERNAME: DefaultAppPool$
This tells you exactly which identity needs Read/Write permissions on:
C:\inetpub\Cushing\uploads
C:\inetpub\Cushing\uploads\2025
C:\inetpub\Cushing\uploads\2025\TaxMaps

🧠 Why this script works
FastCGI launches Python under the Application Pool identity:
· IIS APPPOOL\DefaultAppPool
· IIS APPPOOL\Cushing
· or a custom user if configured.
That is the user that must have:
Read & Execute
Write
List Folder Contents
to avoid “Permission Denied” when serving files.

📌 Want the PHP version too?
If you also want the equivalent PHP script (useful for your CRUD app), here it is:
<?php
header("Content-Type: text/plain");

echo "PHP / IIS DIAGNOSTIC\n";
echo "=====================\n\n";

echo "User (whoami): " . trim(shell_exec("whoami")) . "\n";
echo "App Pool: " . ($_SERVER['APP_POOL_ID'] ?? '(unknown)') . "\n";
echo "Username: " . ($_SERVER['USERNAME'] ?? '(unknown)') . "\n";
echo "User Domain: " . ($_SERVER['USERDOMAIN'] ?? '(unknown)') . "\n";

echo "\nFULL _SERVER DUMP\n-----------------\n";
print_r($_SERVER);

🎯 If you'd like:
I can also create:
✔ A PowerShell command to automatically set correct NTFS permissions
✔ A Python script to test file writes/reads inside IIS
✔ A Python version that also checks impersonation
Just tell me what you want next.

U nder inetpub the permissions and inheritance is always tricky. In the CRUD code, it will sometimes create a folder under my default website Cushing \ uploads folder called 2025 (current year if it doesn't exist already), and under that create folders for the crud topics, see attached 1, and then files under the crud topics folders, see attached 2. So this works well on my laptop, but didn't work so well under my client's machine. Both as windows, me windows 10, client windows 11. I can click on the files I sa ve when inside my crud app, they are saved as url's and use IIS web services to serve the file up in the browser. If I am using the terms correctly. On my client's computer they get permission denied. We looked everything over, but could not figure out the issue. ChatGPT said: You’re 100% describing the classic IIS permissions mismatch that happens specifically when PHP code creates folders and files under inetpub \ wwwroot (or any IIS site root). It works on your machine because your local account and IIS users all align nicely. It fails on the client’s machine because IIS cannot read the folders/files your PHP code created . Below is the exact reason and the exact fix. ✅ Why it breaks only on the client machine On Windows 10 , your user account often ends up creating folders with permissions that naturally propagate to IIS users. On Windows 11 , folder creation via PHP does not automatically inherit permissions that IIS requires. So PHP creates, say: C: \ inetpub \ Cushing \ uploads \ 2025 \ C: \ inetpub \ Cushing \ uploads \ 2025 \ TaxMaps \ C: \ inetpub \ Cushing \ uploads \ 2025 \ TaxMaps \ Tax - Commitment - name - 2025.pdf but the IIS web user cannot read the result . 🎯 Root Cause IIS serves files using one of these identities:

